

Smart. Focused. Done Right.®

Overcoming the Challenges of Large Capital Programs/Projects

Applying Lessons Learned from Extended Power Uprates

Introduction

- Effective capital program/project delivery is a critical competency for any electric utility to achieve high performance
- However, project scope creep, schedule delays, and cost increases have become the rule rather than the exception
- Over the past 10 years, the electric utility industry has seen large demands on its projects and construction management organizations to ensure compliance with a number of concerns, including:
 - Plant retrofits and conversions
 - Ash pond closures
 - Fukushima modifications
 - Security upgrade requirements
 - Extended power uprates (EPUs)
- Large capital programs/projects come with a variety of complicated planning, implementation, and workforce/vendor management challenges
- Using EPU projects as an example, we will provide you with ways to overcome these challenges for any large capital program/project

Lessons learned from extended power uprates can be applied to any large capital program/project.

Overview of Power Uprates

- Power uprates allow utilities to generate more electricity from their existing nuclear plants
- Since the 1970s, the NRC has approved 154 uprates, which have collectively added generating capacity equivalent to about seven new reactors
- Three types of uprates are available to a nuclear plant operator: measurement uncertainty recapture, stretch, and extended

Power Uprate Type	Increase to Licensed Power Levels	Plant and System Impacts
Measurement uncertainty recapture	< 2%	Implementing improved techniques for calculating reactor power, e.g., utilizing state-of-the-art devices to more precisely measure feedwater flow
Stretch	2 to 7%	Changing instrumentation settings without major plant modifications
Extended	7 to 20%	Significantly modifying to major pieces of non-nuclear equipment, e.g., high-pressure turbines, condensate pumps and motors, main generators, and transformers

Source: <u>www.nrc.gov</u>, Backgrounder on Power Uprates for Nuclear Plants

As shown in the table above, implementing EPUs presents the biggest project challenges, given the need to significantly modify major pieces of plant equipment

EPU Project Challenges

EPU projects pose significant scope, implementation, and workforce management challenges

Scope

- Scope is fluid as the EPU project is implemented
- Outages are typically much bigger in scope than a refueling outage, requiring the significant change-outs or upgrades of major equipment
- · Changes to the plant configuration (structures, equipment, and systems) must be precisely documented
- Implementation
 - In many cases, the work is done while other units are still in operation
 - A high degree of project control rigor is required to accurately track cost and schedule against evolving scope
 - Physical security, ALARA limits, lock-out/tag-out requirements, etc., make the work environment very complex
- Workforce management
 - A large number of skilled teams (craft workers and supervisors) that may have never worked together are involved
 - · Some trades and/or skills are likely to be in short supply
 - Many workers are new to a nuclear plant work environment and lack knowledge of nuclear safety and quality standards

Sources:

^{1.} IAEA Nuclear Energy Series No. NP-T-3.9, Power Uprate in Nuclear Power Plants: Guidelines and Experience, 2011

^{2.} Von Lazar, Laszlo, "Lessons Learned from Successful Nuclear Uprate Projects", Nuclear Power International Magazine, Volume 6, No. 4, July/August 2013

Lessons Learned from Recent EPU Efforts

- Planning for contingences is critical. In some cases:
 - · Actual costs more than doubled over initially planned costs
 - Outage durations were as much as 25% longer than planned
 - · Additional outages were required to complete the work
- Costs and schedules should include contingencies for productivity issues, replacing vs. repairing components, and licensing delays
 - Preliminary cost estimates, based on conceptual scope, may not capture all of the work necessary to complete the project
 - Some components that are initially expected to be repaired or recertified will require replacement, i.e., during configuration control verification, perform a detailed drawing walk-down of pumps, motors, valve controls, etc., to minimize scope surprises
 - Major construction activities at an operating nuclear plant, many of which occur in remote and radiologic-controlled portions of the plant, can cause significant implementation difficulties and delays
 - Space for installation can be extremely tight and may require removal or working around hundreds of interferences
 - Productivity can be slowed due to the specialized and time-consuming procedures to ensure worker safety in radiologiccontrolled and electrically sensitive areas of the plant
 - Increasingly conservative regulatory requirements outside of a company's control can cause significant licensing delays
- Obtaining and retaining experienced workers is a challenge
- Active management of vendors is required to ensure productivity is maintained, issues are raised, and progress is on schedule

EPU Project Keys to Success

	Encourage workforce collaboration and the ability of employees to voice concerns early and often to avoid costly errors, re-work, and safety hazards, i.e., maintain a focus on quality and safety
	Develop a self-critical culture focused on improvement and efficiency
Work Environment	Recognize that the EPU team can not anticipate all the changes that will occur during the project
	 Utilize project management technology where possible to improve efficiency and communication
	 Hold regular project team meetings and invite senior leadership periodically to reinforce the priority of the project
	Be honest and realistic about the complexity and uniqueness of the EPU project; investing early in planning and current state analysis can save a lot of rework
	Recognize that the planning process continues all the way to project completion and that the EPU team should always be looking to improve costs, schedule, and general efficiency
Planning	 Make benchmarking trips and incorporate lessons learned and insights, e.g., NEDO-33159, from recent EPU and stretch uprates projects into planning
	Bring in field engineers and/or craft supervisors early in the process for review and comment on actual configuration vs. drawings and equipment installation implications
	Hold combined design reviews with members from different disciplines; utilize the experience and expertise from each discipline to come up with a collectively better solution
	Develop integrated work packages to improve efficiency and overall performance

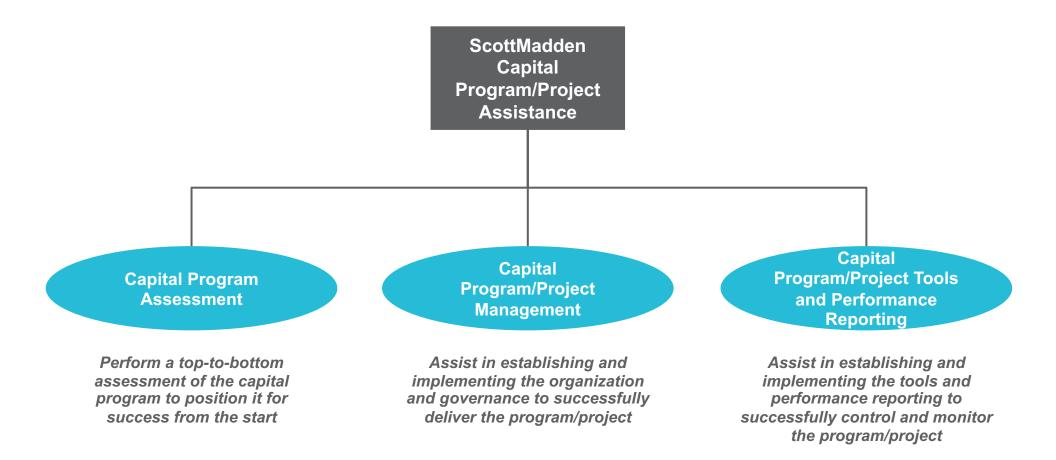
Sources: 1. IAEA Nuclear Energy Series No. NP-T-3.9, Power Uprate in Nuclear Power Plants: Guidelines and Experience, 2011

2. Von Lazar, Laszlo, "Lessons Learned from Successful Nuclear Uprate Projects," Nuclear Power International Magazine, Volume 6, No. 4, July/August 2013

5 Copyright © 2021 by ScottMadden, Inc. All rights reserved.

EPU Project Keys to Success (Cont'd)

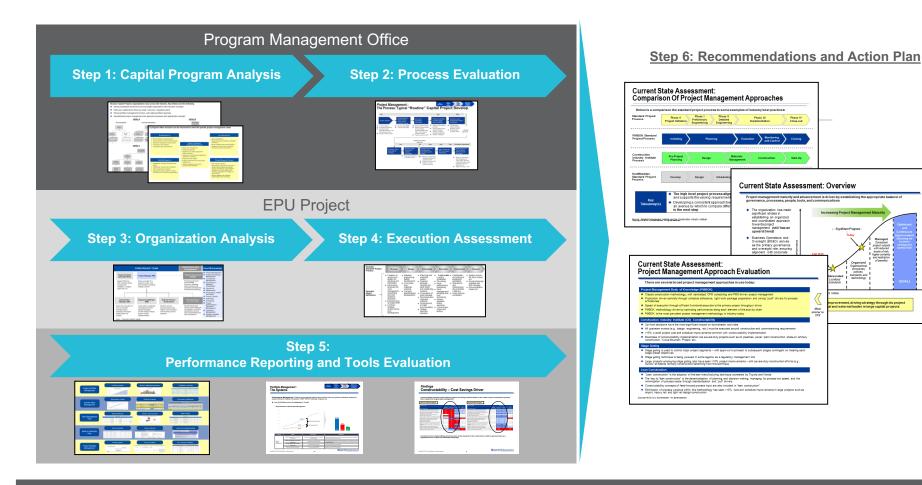
Implementation	 Manage like a large-scale engineering, procurement, and construction project and not like a modifications project or refueling outage, e.g., funding is stage-gated Collect accurate data and monitor relevant performance metrics throughout the EPU project Conduct periodic independent project audits using industry experts with previous EPU experience Involve employees who will operate the plant during implementation Ensure operating staff are adequately trained on how the plant will operate after the power uprate, e.g., operations, maintenance, engineering, radiation protection personnel, etc. Update all affected documentation, e.g., operating and maintenance procedures, to reflect the new operating conditions Focus on procedure development, training, and simulator modeling to help verify actual plant response vs. expected plant response in power uprated conditions
Vendor/ Contractor Alignment	 Align vendors and contractors with project objectives and the uniqueness of the project Ensure vendors and contractors are aware of and held to the tenets of nuclear safety and align their nuclear safety culture with that of your company Work collaboratively with contractors and combine cost, schedule, and human performance monitoring tools and processes Ensure contracts have clear terms and conditions and are very specific in scope and timing Plan for vendor handoffs of work products and resolve disputes promptly to reduce idle vendor time


^{1.} IAEA Nuclear Energy Series No. NP-T-3.9, Power Uprate in Nuclear Power Plants: Guidelines and Experience, 2011

€ Copyright © 2021 by ScottMadden, Inc. All rights reserved.

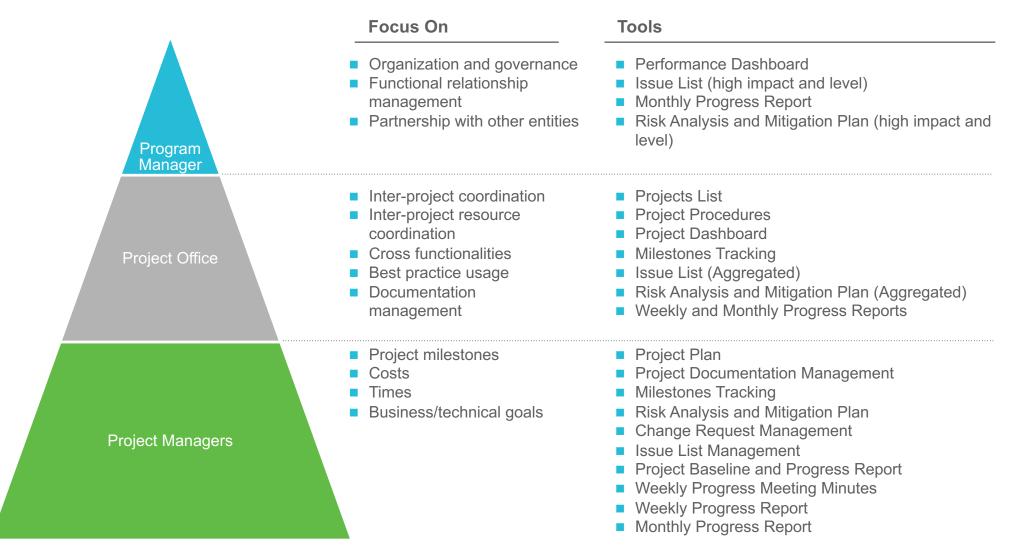
^{2.} Von Lazar, Laszlo, "Lessons Learned from Successful Nuclear Uprate Projects," Nuclear Power International Magazine, Volume 6, No. 4, July/August 2013

How ScottMadden Can Help



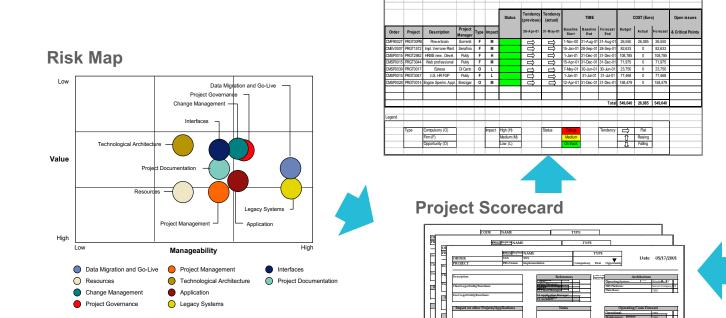
Capital Program Assessment Overview

ScottMadden's Capital Program Assessment examines how the capital program is implemented—from top to bottom—with a look at the PMO and a review of the performance reporting and tools in place.



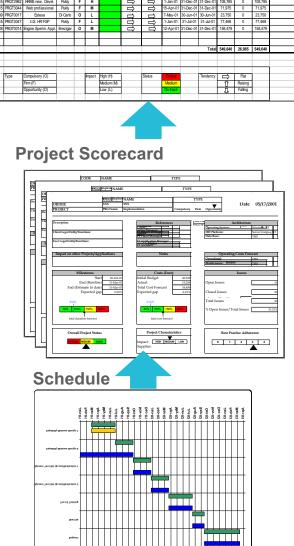
ScottMadden's approach analyzes these critical areas to provide a detailed assessment of your capital program with actionable recommendations.

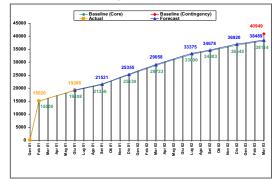
Capital Program/Project Management Overview


Capital Program/Project Management Tools and Performance Reporting Overview

FGP

Performance Dashboard


PROJECTS DRIVING BOARD



Progress Report

PROJECT	PRGTnnnn	Impleme	ntation	MON	THLY ST	ATUS F	REPORT		
REF.	1/	24	-						
MONTH	MARZO 2001		1	-					
PHASE	PROTOTIPAZIC	NE	1						
PROJECT STATUS				1					
E' stato definito il Sy	stem Integrator. E	stato definito	il Piano di proge	tto.	1		1		
E' stata impostata la	proposta di Struttu	ra Organizzat	iva di Progetto. I	E' stata imp	ostata la base	line per i co	sti di Progett	0	
Sono state attivate le	Procedure di Gest	ione Scope Ch	ange Request, d	li Gestione	Issue List e d	ti Gestione o	della Docum	entazione.	
E' stato Definito il to	l di gestione della	documentazi	one di Progetto.	E' stata imp	ostata l'Anal	isi del Risch	do.		
	1		1	1	1		1	-	
OPEN ISSUES			ACTIONS				RESPONSE	LE	DUE DATE
1 - L'Ambiente di Pre	totipazione non è	disponibile.	Predisporre an	Predisporre ambiente prototipazione				fanager	06/04/01
	1								
NEXT STEPS									
Ufficializzazione Str	uttura Organizzati	va di progetto	. Definizione de	i componei	nti dei team d	la parte dei	Responsabil	/Referenti.	1
Verifica profilo di sp	esa e budget Archi	tettura Tecnol	logica. Impostaz	ione attivit	a di Quality A	Assurance.			
				1					
	GE REQUESTS								
APPROVED CHANG	Description							Approval	Allocated
Nr.	Description							Date	Contingency
	Description								
	Description							Date	
	Description							Date	
	Description							Date	genty

Cost Tracking

Costs Detail

ORDER	COMM		BASELIN	EVS ACT	F.G.P.		
PROJECT	PRGTnnnn	Implementation					Back to inde
			COST (Euro)				
Cost Type	Cost Element		Baseline	Actual	Forecast	Notes	
ŧ	Development & I	18,550	2,434	18,550			
System velopm	External Resource	0	0	0			
System Development	Operational/Appl	3,783	3,783	3,783			
	Total Sys	22,333	6,217	22,333			
ŧ	HW/SW Design &	1,572	1,572	1,572			
HW/SW Management	HW/SW Acquisiti	6,500	6,500	6,500	I costi relativi all'architettura tecnologica saranno dettagliati al term		
AH 2	SW Licences		3,145	3,145	3,145	della fase di definizione dei requisiti	
Ŵ	Total HW/SW Mgnt		11,217	11,217	11,217		
	Т	33,550	17,434	33,550			
	Total I	4,564	1,674	4,564			
	P	38,114	19,108	38,114			
		Contingency	2,835	100	375	Sono state attivate 3 Scope Change Reque	st
	Overall Project Total			19,208	38,489		

